Molecular Mechanisms of Autoimmunity

By: Nadia Chanzu, PhD Student, UNITID
Infectious Minds Presentation
November 17, 2011

Introduction

Pick an organ, any organ...

Autoimmunity can affect ANY organ/organ system in the human body

Autoimmune Uveitis

Sjogren's Syndrome

Rheumatic Fever

Autoimmune Hepatitis

Autoimmune Oophoritis

Rheumatoid Arthritis

Multiple Sclerosis

Pemphigus

Goodpasture's Syndrome

Diabetes

Addison's Disease

Ulcerative Colitis

Autoimmune hemolytic Anemia

Molecular Mechanisms of Autoimmunity

How is autoimmunity induced?

What could go wrong here?

Major factors in initiation and regulation of AI disease

- 1. MHC Control
- 2. Antigen Mimicry
- 3. Altered Proteins

Major Histocompatibility Complex

 Human – A set of linked genes, located on chromosome 6

- Molecules encoded by the MHC:
 - Cell surface receptors
 - Bind unique antigen fragments
 - Display them for recognition by immune effectors;
 most importantly T Cells

Antigen Presentation

APC to T-cell

- The MHC accomplishes its major role in immune recognition by satisfying two distinct molecular functions:
 - Binding of peptides (or in some cases non-peptidic molecules)
 - Interaction with T cells, usually via the $\alpha\beta$ T-cell receptor (TCR).

MHC CLASS I

Three MHC Class I alpha chain genes:

HLA - A, B and C

MHC CLASS II

Three MHC Class II alpha chain genes:

HLA – DR, DP and DQ

MHC & Autoimmunity

 Regardless of the underlying cause of autoimmunity, predisposition to a given autoimmune response is associated with certain HLA allele(s)

 Involvement of the requisite HLA allele is at the level of antigen presentation by the APCs for T Cell recognition

MHC Control gone wrong? DR3, DR4

Normal Pancreas

Pancreas with Insulitis

Associations of HLA serotype with susceptibility to autoimmune disease						
Disease		HLA allele		Relative risk	Sex ratio (♀:♂)	
Ankylosing spondylitis		B27		87.4	0.3	
Acute anterior uveitis		B27		10	< 0.5	
Goodpasture's syndrome		DR2		15.9	~1	
Multiple sclerosis		DR2		4.8	10	
Graves' disease		DR3		3.7	4–5	
Myasthenia gravis		DR3		2.5	~1	
Systemic lupus erythematosu	s	DR3		5.8	10-20	
Type I insulin-dependent diabetes mellitus		DR3/DR4 heterozygote		~ 25	~1	
Rheumatoid arthritis		DR4		4.2	3	
Pemphigus vulgaris		DR4		14.4	~1	
Hashimoto's thyroiditis		DR5		3.2	4–5	

Figure 13-20 Immunobiology, 6/e (Coulond Science 2005)

Major factors in initiation and regulation of AI disease

- 1. MHC Control
- 2. Antigen Mimicry
- 3. Altered Proteins

Molecular Mimicry

Molecular Mimicry

- Microbe and Host Cell:
 - Share of a linear amino acid sequence
 - Share of conformation fit
- Host immune response against the microbe reacts if the host sequence comprises a biologically important domain
- Autoimmunity may occur

Rheumatic fever is a classic example of molecular mimicry

TABLE 20-3 Molecular mimicry between proteins of infectious organisms and human host proteins

Protein*	Residue [†]	Sequence [‡]
Human cytomegalovirus IE2	79	PDPLGRPDED
HLA-DR molecule	60	V T E L G R P D A E
Poliovirus VP2	70	STTKESRGTT
Acetylcholine receptor	176	TVIKESRGTK
Papilloma virus E2	76	SLHLESLKDS
Insulin receptor	66	V Y G L E S L K D L
Rabies virus glycoprotein	147	TKESLVIIS
Insulin receptor	764	N K E S L V I S E
Klebsiella pneumoniae nitrogenase	186	SRQTDREDE
HLA-B27 molecule	70	KAQTDREDL
Adenovirus 12 E1B	384	LRRGMFRPSQCN
lpha-Gliadin	206	LGQGSFRPSQQN
Human immunodeficiency virus p24	160	GVETTTPS
Human IgG constant region	466	GVETTTPS
Measles virus P3	13	LECIRALK
Corticotropin	18	LECIRACK
Measles virus P3	31	EISDNLGQE
Myelin basic protein	61	EISFKLGQE

^{*}In each pair, the human protein is listed second. The proteins in each pair have been shown to exhibit immunologic cross-reactivity.

SOURCE: Adapted from M. B. A. Oldstone, 1987, Cell 50:819.

[†]Each number indicates the position on the intact protein of the amino-terminal amino acid in the listed sequence.

[‡]Amino acid residues are indicated by single-letter code. Identical residues are shown in blue.

Major factors in initiation and regulation of AI disease

- 1. MHC Control
- 2. Antigen Mimicry
- 3. Altered Proteins

The development of T cells:

Figure 7-2 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Figure 7-2 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Protein Mutation & Altered Expression

Expression of Autoimmune Regulator Gene (AIRE) in the thymus shape the immune repertoire:

Figure 13-9 Immunobiology, 6/e. (© Garland Science 2005)

Exceptions to the Rule – Simple Genetic Autoimmune Illnesses

Disease	Gene	Mechanism
APS-1 (Autoimmune polyglandular syndrome type 1)	AIRE	Decreased expression of self-antigens in the thymus, resulting is a defect in negative selection
IPEX (Immunodysregulation, polyendocrinopathy, enteropathy, X-linked)	FOXP3	Decreased generation of Tregs
ALPS	FAS, FASL	Failure of apoptotic death of self reactive T or B cells

Major factors in initiation and regulation of AI disease

- 1. MHC Control
- 2. Antigen Mimicry
- 3. Altered Proteins

Posttranslational Modification

- Translation: Process of synthesizing the peptide chain of amino acids specified by the nucleotide sequence on the mRNA
- Post-translational modification: The chemical modification of a protein after its translation

T-CELL MEDIATED DISEASE

Autoimmunity to Sequestered Proteins

Sequestered proteins are normally sheltered from immune recognition

 However, they can become immunogenic once exposed to recognition by immune cells and induce efficient immune responses

 A good example: Antibodies in blood can attack Myelin Basic Protein if Blood-Brain barrier is breached

Multiple Sclerosis

MS patients can have autoantibodies and/or self reactive T cells which are responsible for the demyelination

Additional Factors!!

Pregnancy

 Antibody-mediated autoimmune diseases can appear in the infants of affected mothers as a consequence of trans-placental antibody transfer

Figure 13-5 Immunobiology, 6/e. (© Garland Science 2005)

Hormones

 Some autoimmune diseases show a significant bias in gender suggesting that sex hormones are involved in pathogenesis

 Females are much more likely to develop autoimmune illness

Hypothesis: estrogen response elements (EREs) in several genes

Estrogens and Autoimmunity

Figure 13.18 The Immune System, 3ed. (© Garland Science 2009)

Stress

STRESS:

- Normal Stress (Exams!)
- Chronic Stress = Disease

Stress induces change for adaptation:

- Behavioral (e.g. Moods)
- Physiological (e.g. HBP)
- Immunological (e.g. AI)

IF YOUR WORKLOAD GETS TOO MUCH...

THINK OF HOW TO BALANCE YOUR LIFE!

Future

What is an Artificial Pancreas?

Questions

References

- Atassi MZ and Casali P. (2008). Molecular mechanisms of autoimmunity. Autoimmunity, **41** (2), p.123-132.
- Wiegers GJ, Kaufmann M, Tischner D and Villunger A. (2011). Shaping the T-cell repertoire: a matter of life and death. <u>Immunology and Cell Biology</u>, 89, p.33-39.
- Waterfield M and Anderson MS. (2010). Clues to immune tolerance: the monogenic autoimmune sydromes. <u>Annals of The New York Academy of</u> <u>Sciences</u> Issue: The Year in Human and Medical Genetics, **1214** (2010), p.138 – 155
- Janeway CA, Travers P, Walport M and Shlomchik M. Immunobiology, Sixth Edition, Garland Science.